Cloud Computing Time-Dummy Hedonics for U.S. PPI

Claire O'Bryan and Steven Sawyer
36th Voorburg Group meeting
22 September 2021

Contents

- U.S. PPI Cloud Classification
- Similar Published Research
- U.S. PPI Cloud Hedonic
- Cloud Price Determining Characteristics
- Microprocessor Attributes and Benchmarks
- Sample Analysis by Service Provider
- Conclusion

U.S. PPI Cloud Classification

- Data Processing, hosting, and related services (NAICS 518210)
 - ► laaS Infrastructure as a service
 - Leasing of basic computing structures. laaS is the base of all other cloud services
 - PaaS Platform as a service
 - Use of applications created by programming languages
 - SaaS Software as a service
 - Software published by others

Cloud Services Pricing

- Cloud service pricing
 - ► Fee-based transactions: average, standard, or prepaid rates
 - ► Estimated flat-fee: most commonly seen in long term contracts

Similar Published Research

- Coyle and Nguyen Cloud Quality Adjusted Price Index
 - ► UK price index
 - Amazon Web Services
 - Uses single class of cloud services, the M product line
 - 4 tiers of instance size: small, medium, large, xlarge
 - Makes quality adjustments based on processing performance.

Similar Published Research

- Byrne, Corrado, and Sichel Cloud Price Model
 - Price indexes use data for AWS services
 - IaaS Products: virtual machine rental, data storage
 - PaaS Products: database services
 - Prices from Virginia, California, Oregon

Similar Published Research

- Byrne, Corrado, and Sichel Cloud Price Model
 - ► Virtual Machine Rental Hedonic
 - Price determining characteristics used: processor power, memory, storage, Operating System
 - Model characteristics:
 - Unweighted adjacent- quarter regressions
 - Due to unavailability of quantity data
 - Time-dummy variable hedonic specification
 - AWS ECU for CPU performance
 - Log price dependent variable

U.S. PPI Cloud Hedonic Model

- Used much of the same structure as the Byrne, Corrado, and Sichel approach
 - ▶ Differences between the models:
 - Sample includes products from 3 service providers
 - Specification selection
 - Storage and computing characteristics exist in the same model
 - Additional price determining characteristics
 - Including microprocessor price determining characteristics

U.S. PPI Cloud Hedonic Model

- laaS
 - ► laaS is the basis for other cloud services
- Time dummy with overlapping quarters (17Q2-19Q2)
- Log price per hour as dependent variable
- AWS, Azure, and Google

U.S. PPI Cloud Model

- Quality adjusted price change from market entry and exit
 - Prices flat
- "Weighted" regressions using quantity based on ratio of products from each service provider
- Specification selection using statistical learning technique from Sawyer and So microprocessors article

Price Determining Characteristics

- Microprocessor
- Virtual Central Processing Units (vCPU)
- Operating system
- Memory
- Data storage
- Type of price
- Region

Microprocessor Attributes

- Cores
- Threads
- Thermal design power (TDP)
- Base frequency
- Turbo frequency
- Cache

AWS ECU

- Elastic Compute Cloud (EC2) compute unit (ECU)
 - Credible measure of microprocessor performance
- Compare models with ECU to those with characteristics
 - Validate characteristics models
- AWS has since discontinued publication of ECU details

ECU Models

- Using ECU as one of the pricing characteristics
 - Only two quarters over two years showed price changes
 - Supporting that prices changes are due to service entry/exit
 - ► Coefficients revealed that characteristic variables are correlated with each other
 - ► Very high R^2 for each time dummy model

Characteristics Models

- Omit vCPU
 - Strongly correlated with cache and TDP
 - Cache and TDP are proportional to number of vCPUs (threads or sometimes cores)
- Base and turbo frequency are closely correlated
 - Small number of different microprocessors models
- Model selection done twice
 - Once with base frequency included
 - Once with turbo frequency included

AWS Results Summary

	17Q4-18Q1	18Q3-18Q4
ECU quarter dummy	-0.0296	0.0671
CPU base freq	-0.0358	0.0708
quarter dummy		
CPU turbo freq	-0.0422	0.083
quarter dummy		

Use of Specification Selection

- For all service provider models:
 - Most variables selected
 - ► Technique suggests models not over-specified
 - In production, use of all variables may simplify implementation of models
- Azure and Google
 - Average price changes of base and turbo frequency models as there is no target model to compare

Potential Future Work

- Weighting observations by revenue
- Models for PaaS and SaaS
- Hedonic quality adjustment model or hedonic imputation
 - ► The type of model needed partly depends on the information provided by PPI respondents

Conclusion

- Time dummy hedonic models are able to estimate quality adjusted price change for laaS
- AWS using characteristics tracks closely with AWS using ECU
- Sample selection critical because quality adjusted price changes are due to entry and exit

Contact Information

Claire O'Bryan
202-691-7028
o'bryan.claire@bls.gov

Steven Sawyer 202-691-7845 sawyer.steven@bls.gov

